ICS 103: Computer Programming in C
Handout-11 Topic: Recursive Functions.
Objective :
To know about importance, working & use of recursive functions.

What is Recursive Function ? :

 Recursive functions are the functions which call themselves repeatedly until some condition is met and then the function stops calling itself and returns to the caller.

A recursive function has two parts :

 1- Base case (stopping condition)

 2-Recursive case :which must always get closer to base case from one invocation to another.

 e.g

 1 for n=0 (base case)

 n!=

 n*(n-1)! for n>0 (general case)

A recursive solution always need a stopping condition to prevent an infinite loop and we achieve it by using base case.

e.g

power(int x, int y)

 {

 if(y==0) return 1; /* base case */

 else

 return (x*power(x,y-1)); /*general case */

 }

Any problem which we can solve using recursion, we can also solve that problem using iteration.

 Generally, a recursive solution is slightly less efficient, in terms of computer time, than an iterative one because of the overhead for the extra function calls. In many instances, however, recursion enables us to specify a natural, simple solution to a problem that otherwise would be difficult to solve. For this reason, recursion is an important and powerful tool in problem solving and programming. Recursion is used widely in solving problems that are not numeric, such as proving mathematical theorems, writing compilers, and in searching and sorting algorithms.

· In iterative method we use for, while, do-while for achieving iteration for problem solving.

· In recursive method of problem solving we replace for, while, do-while statement by if statement that selects between the recursive case and the base case (i.e terminating condition).

· In recursion successive function call values are stored in stack and accessed in LIFO.

Examples #1:

	/* compute n! using a recursive definition */
	/* iterative solutions computes n! for n is >=0 */

	int factorial (int n)

{

if (n == 0)

 return 1;

else

 return(n * factorial (n-1));

 }
	int factorial (int n)

{

int i, product=1;

for (i=n; i>1; --i)

/* n * (n-1) * (n-2)…*1 */

product=product *i;

return (product); }

 Example #2:

 Power function :

base exp.

One way to do the calculation is:

base exp= base * base * base * … * base (exp times if exp is integer)

A recursive expression of power function is:
base exp = base * base exp-1

 In this case the stopping condition (the base case) occurs when exp=0. Since any number raised to the 0 power is 1, we have the following situation:

 1 for exp=0 (base case)

 base exp =

 base* base exp-1 for exp>0 (General Recursive case).
Implementation of Power Function:

	 Recursive
	Iterative

	int power(int base, int exp)

{

 if (exp = = 0)

 return (1);

else

return (base * power(base, exp –1));

}

	int power_it(int base, int exp)

{

int count, product;

product=1;

for (count = exp; count >0; count --)

product = product * base;

return (product);

} OR

	
	int power(int base, int exp)

{ int p=1;

while(exp !=0)

{ p *= base;

exp --;

}

return p;

}

Example #3:

 Fibonacci Sequence:

The Fibonacci numbers are a sequence of numbers that have many varied uses

the Fibonacci sequence 0, 1, 1,2,3,5,8,13,21,34

Fibonacci number Begins with the term 0 and 1 and has the property that each succeeding term is the sum of the two preceeding terms.

Fibonacci(0) is 0

Fibonacci (1) is 1

Fibonacci(n)= Fibonacci (n-2) + Fibonacci (n-1) , for n >=2

This is defined recursively as:

f0 = 0,

f1 = 1

fi = fi-2 + fi-1 for i=2,3, ..

i.e. except for f0 and f1, every element is the sum of its previous two elements:

 0, 1, 1, 3, 5, . . .

The following functions implements (computes) the nth Fibonacci number :

	Iterative Solution
	Recursive Solution

	int fibonacci (int n)

{ int i,sum1=0, sum2=1, sum;

 if (n<=1)

 return n;

 else

 { for (i=2; i<=n; i++)

 {
sum=sum1+sum2;

sum1=sum2;

sum2=sum;

 }

 return sum;

 }

}
	int fibonacci(int n)

{ if (n<=1)

 return n;

 else

 return (fibonacci(n-1) + fibonacci(n-2));

}

 In recursive function call Dynamic memory allocation occurs at run time. With each function call, an activation record contains the state of a given function, that is, the address of the current instruction and the values of all the local variables, each time a function calls itself; an activation record is created and pushed on the run-time stack. The first call thus appears at the bottom of the sack. The last call (the base case) appears at the top of the stack. At that time the top activation record is popped from the stack and the function returns its first value. The process continues until all activation records are popped from the stack, at which time the recursion stops.

PAGE
Page 1 of 4

